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In this note we consider the problem of the dependence between the stress 

and the motion of the boundary for the case of a steady axial flow of a 

liquid between two infinite parallel cylindrical surfaces. we take into 

account the generation of heat due to the dissipation of energy and also 

the dependence of viscosity of the liquid on temperature, 

1. One of the simpler thermohydrodynamic problems is that of the flow 

between two flat parallel, infinite planes, one of which moves uniformly 

and with no pressure gradient in the direction of motion. 

The elementary solution of this problem is well known. lt is not too 

difficult to obtain somewhat more complicated results, taking into account 

the heat exchange and the temperature effect on the viscosity of the 

liquid, but, as before, neglecting the dissipation of the energy. ln these 

cases the energy equation is integrated independently from the equation 

of motion. In this way the effect of the velocity field on the thermal 

regime of the flow is neglected, and the viscosity distribution in the 

liquid layer appears to be independent of the velocity of the boundary. 

Therefore, it follows from all these solutions that with increasing velo- 

city of the wall u the friction stress increases linearly, T = au. lt is 

obvious that accounting for the dependence of the viscosity on dissipative 

heating of the liquid may substantially change the character of the 

dependence between r and u. 

In the work by Ragg El 1 a solution has been given of the problem of 

flow between flat parallel planes, taking into account the energy dissi- 

pation of the liquid, the viscosity of which depends on temperature 

according to Reynolds’ relation: 

?=?,e --NT-T,) 
(1.1) 
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where B and Tsl are constants, and 9, = q(Tmf. The solution for r(ID ob- 
tained by Ragg for the case of simple boundary conditions indicates that 
increasing the velocity increases the stress to a certain maximum value, 
after which the latter gradually decreases, approaching zero asymptotic- 

ally. 

In papers by Pavlin 12 1 and Targ 13 I the same problem has been con- 
sidered for a different 
for a hyperbolic law 

It was found by them 

dependence of viscosity on temperature, namely 

1 
51 = ‘lm 1+-a% (T- !rJ (i.2) 

that for increasing velocity the stress mono- 
tonically increases, attaining asymptotically a certain definite value. 

However, in this case also the analytical solution showed an upper limit 
on the friction stress for arbitrarily high values of velocity, other 
conditions remaining constant. 

we may note that from the solution of other thermohydrodynamic problems 
r.4,5 3) where the hyperbolic dependence (1.2) between the friction Stress 
and characteristic velocity of the flow has been also utilized, one can 
obtain results qualitatively analogous to those of Ref. 12a3 1. 

Golubev [G 1 was able to show that over a considerable range of velo- 

cities, solutions [2,3 f agree quite well with experiment. The data of 
Golubev indicate that the slight change in stress for considerable changes 
in velocity, shown by the solutions [ 2.3 1, may occur under real condi- 
tions. approximating to that in a lubricating film. 

The demonstration of limitations on the stress for arbitrarily high 
velocities of a liquid is one of the essential results of thermohydro- 
dynamics, It remains unexplained, however, to what extent this effect is 
determined by the nature of the assumed dependence of the viscos’ity on 
temperature and other assumptions underlying the solution. It is necessary 
to point out that equations (1.1) and (1.2) assure an exact solution for 
comparatively small changes of temperature which, of course, corresponds 
to rather small changes of velocity. Therefore, the use of the formula 
r = r (ti), from the solutions in Ref. Il.2 I, for great values of U. [which 
is essentially equivalent to the extrapolation of equations (1.1) and 
(1.2) into the region of arbitrarily large temperatures) cannot be con- 
sidered sufficiently reliable. 

In the following we study the dependence between the stress and the 
velocity of a viscous liquid contained in a narrow gap between two 
cylindrical surfaces, for an arbitrary dependence of the viscosity on 
temperature. 
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2. Consider a layer of a viscous liquid contained between two infinit 

flat planes y = 0 and y = h, one of which moves uniformly in direction 

x with velocity U. As has been shown before, all axial flows in the gap 
between two arbitrary cylindrical planes can be reduced to such a form 

14 I. 

The flow and heat transfer processes which are established in such a 
system, in the absence of body forces and of pressure gradients in the 
direction of flow, can be described by the following equations t3 3. 

dv dr 

‘;-i ’ -0, -- 
dy (2.1) 

Here f = r is the tangential stress, v = v is the flow velocity, 
& is the theritl conductivity of the liquid, 9 2 vr(T) is the viscosity, 
J is the mechanical equivalent of thermal energy. We shall assume the 
plane y = 0 to be stationary. Then the boundary conditions for the velo- 
city are 

V (0) = 0, v (h) = U (2.2) 

The boundary conditions for the temperature we take to be in the 
simplest form, assuming the temperatures of both walls are known: 

T (0) = To, T(h) = T, (2.3) 
We introduce into the system (2.1) - (2.3) the dimensionless variable 

T-T,, 4=+ 6= T 
, qJ =2!L, u--_--- 

m ? i (2.4) 

where Ta is the characteristic temperature, such that T > T,,, and 

9, = s(Q). 

We introduce also the dimensionless parameters 

zhU -- 
a-- JkT, ’ 

‘I¶ 
(2.5) 

The quantity q represents the dimensionless stress, % determines tht 
strength of heat generation, !$ is a dimensionless characteristic velo- 
city. 

In the new variables the system (2.1) has the form: 

; :; 
1 II1 d% -w=---...- 
2 I&t -@-+ 2 

!!A&0 (2.6) 

where 1/1= $ (8). Eliminating the function $ from the last equation by 
means of the first equation (2.6). ne obtain 

(2.7) 

The boundary conditions for the velocity a. temperature 8 and fluidity 

& are 
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u(0) = 0, e (0) = 60, 9 (0) = Jio, u (f) = 1, 6 (1) = 81, + (1) = $1 (2.8) 

The second equation (2.6) can have its order lowered, and reduces to 
the following: 

zj2= l-lla [F’ - F(e)] 
dE I 

F* = const) (2.9) 
0 

Equation (2.7) can be also integrated. after which we obtain 

(u’ = cold, (2.10) 

We shall determine the constants u* and F* by means of the boundary 
temperatures. From (2.8) and (2.9) we have 

6,,“J = l&a[F* - F (&,)I, ep = III* [F’ - F (e,)] (2.11) 

Similarly, from (2.101, after squaring both sidea of the equation, we 
find: 

eo’a = nB+w, el’a = naa = (U* - I)4 (2.12) 

Solving the system (2.111, (2.12) for u*, F*. we obtain 

F (6,) - F (6,) 
3 

e 
Ib* ’ I f wO) (2.13) 

From equations (2.9) and (2.10) it is seen that u* is the value of 
the velocity, and F* is the value of the function F(6) at the point 
6)* = 8(p). where de/& = 0. 

From the second equation (2.6) it follows that over the whole range 
of values of 5 for which the solution has meaning and I/J (8)> 0, the 
second derivative of temperature d28/dt2 is strongly negative. 

Thus, all extremal temperatures in this domain represent maxima. 
Therefore, in the interval of interest to us (0,l) there may exist a 
maximum of temperature, but, of course, only one. 

In order for the point p corresponding to this maximum to be located 
in that interval (0.11, it is necessary and sufficient that the following 
inequalities be satisfied, 

e,‘_> 0, 81’ G 0, or OGu*<i . 

From the first of equations (2.13) we obtain finally the condition 

for the existence of a temperature maximum in the layer of liquid: 

w 3 I F ted - F (e,) I (2.14) 

The inequality (2.14) indicates that starting with sufficiently large 
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velocities of the boundary, when 5 is large, the maximum temperature 

always occurs in the interval (0,l). Inasmuch as we are interested in 

conditions of flow at high velocities, we shall assume in the following 

that condition (2.14) is satisfied. 

We shall now find an integral relationship for determining n,. To this 

end we shall integrate (2.9) with respect to [, with the limits (8, [*) 

for 8i > 0, and the limits ([*, 1) for @ < 0: 

e* 
de 

nlc;r = 5 VP - F (e) 
(et 2 O), 

e* 
From (2.15) we obtain 

& 

iI1 (E* - 
de 

*I = s v’F* - F (0) 
(0’4) (2.15) 

e* 

0’ 

nl = 0” 1/‘p doF (0) 

6. 

s de + s VF--F(8) - 
0, 

(2.16) 

or 

II, = J, + 25, s d0 

J”=e* V-@--P(0) ’ 

0’ 

s d0 

J=B,ifF*-F(ej 
(2.17) 

where the integral f in (2.17) is obviously non-negative. Equation (2.17) 

represents the desired relation between parameters If, and 5, the latter 

being related to F’ in accordance with formula (2.13). 

3. Before investigating the properties of the integrals entering into 

equation (2.16), we shall prove that when the inequality (2.14) is ful- 

filled, the derivative 

(3.1) 

is non-negative. i.e. F(@*) = F* is a nondecreasing function of 5. In 

addition, from relation (2.13) it is obvious that F* --, 00 for 5 + OS. 

Consequently, inasmuch as we are interested in the relation between 

II, and “3 for great values of 5 we may study the behavior of ni as a 

function of BY for large values of F*. 

In equation (2.17) the integral J, has limits independent of F* and 
obviously tends to zero for F* + m, independently 

function F(6). 

We shall present the second integral 3 (2.17). 

the form: P 
J= 

s 

1 
[F* -R’(6)]“’ ~~~d6 dF 

FtW 

of the form of the 

which is improper. in 

(3.2) 
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Remembering, that dF/d 8= $(6), and that for a liquid (dq/dT < 0) we 

always have ti,>/ 1 for 8 > 0 (T> T_), it can be easily shown that the 

integral J is convergent. 

The problem consists of establishing the relation between the 

of the function F(8) and the properties of the integral J for F* 

e*+m. 

Introducing the variable t = \/ F@)/F*, the integral J may be 

as follows: 

J 
l cD(NPT dt 

=tx vi-_ s ( 
cp=@(t~~)q2) 

Yaking use of theorems following from the well known lemma of 

and of the theorem of the mean value (see for example Ref. 7) it 

shown that: 

character 

+ m or 

written 

(3.3) 

Arzela 

may be 

(a) lim J = 0 for 8’ + m, if @ (by) = 0 and @( t\/F* ) is limited from 

above. 

(b) lim J= ncP(.=+ for f3* + -, if @ (CO) < m and @ (tdF*) is limited 

from above. 

CC) lim J= m for 8’ + Do if @+) = =. (3.4) 

Returning to the determination of the function F(8). it is Sean, 

that if $ (8) is continuous, which is valid on physical grounds, the 

function(tQis also continuous. and in addition for 6 = 0 we always have 

a= 0. Therefore, for cases (a) and (b) the boundedness of @ is assured 

for arbitrary values of 8 and hence of tdF*. 

Inasmuch as the functions @, corresponding to points (a) (b) and (c) 

constitute a very considerable class, then with them it is possible to 

describe all practical possible cases of the dependence of the fluidity 

$ on temperature. 

In the desired relation between r$ and nj according to (2.17) we have: 

lim IIr = lim II1 = 2ti (co) 
II,-+ca B.-Da, 

(3.5) 

If for 8’ + DoI the fluidity $ tends to a finite value, then the func- 
tion 

(3.5) 

increases without limit. If I/J (DO) = 00, which occurs in the majority of 
cases, then eliminating the indeterminacy in the expression for cP(8’) we 
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obtain from (3.5) finally 

(3.7) 

Thus the behavior of the parameter fll for large values of n7 is fully 

determined by the thermal behavior of the fluidity. From relaCions (2.17 

and (3.7) one can easily obtain the results of Ref. [ l-3 I. 

BIBLIOGRAPHY 

1. Hagg, A.C., Heat effects in lubricating films. J. Appl. Mech. Vol.11, 

p. A72, 1944. 

2. Pavlin, A. K., Ob odnom sluchae integrirovaniia uravnenii dvizheniia 

viazkoi zhidkosti s peremennym koeffitsientom viazkosti (One 

example of the integration of the equations of motion of a viscous 

fluid with a varying coefficient of viscosity). PMM Vol. 19, No. 5 

pp. 635-638, 1955. 

3. Targ, S. M. , Osnovnye zadachi teorii laninarnykh techenii (Basic 

Problems in the Theory of Laainar Flows). GITTL. 1951. 

4. Regirer, S.A., Nikotorye termogidrodinamicheskie zadachi statsionar- 

nom odnomernom techenii viazkoi kapel’noi zhidkosti (Some thermo- 

hydrodynamic problems of stationary, uniform flow of a viscous 

liquid). PM vol. 21, No. 3, 1957. 

5. Gorazdovskii, T. Ia. and Regirer, S.A. Dvizhenie n’iutonovskoi zhid- 

kosti mezhdu vrashchaiushchimisia koaksial’nymi tsilindrami pri 

nalichii vnutrennikh teplovykh protsessov, vliiaiushchikh na viazk: 

svoistva ( The motion of a Newtonian fluid contained between 

rotating coaxial cylinders and subject to internal thermal processt 

affecting the viscous properties). Zh. Tekh. Fiz. Vol. 26, NO. 7, 

pp. 1532- 1541, 1956. 

6. Golubev, A. I., 0 vliianii tepla na zhidkostnoe trenie v nenagruzhennc 

kol’tsevom sloe smazki (On the influence of heat on liquid friction 

in an unloaded annular layer of lubricant). Trenie i iznos v mashi- 

nakh (Friction and Wear in Machines). Vol. 12, pp. 181-204, 1958. 

7. Fikhtenholtz, G. M., Kurs differentsial ‘nogo i integral ‘nogo ischis- 

leniia (Course of Differential and Integral Calculus). Vol. 2, 

GITTL, 1951. 

Translated by B.Z. 


